Selected Problems of Intelligent Corpus Analysis through Probabilistic Neural Networks
نویسندگان
چکیده
The paper describes the application of artificial neural networks for corpus analysis which consists of intelligent mechanisms of analysis and recognition of word clusters and their meaning. The task of analyzing a corpus of academic articles was resolved with probabilistic neural networks. A review of selected issues is carried out with regards to computational approaches to language modeling as well as statistical patterns of language. The paper features recognition algorithms of word clusters of similar meanings but different lexico-grammatical patterns from the established corpus using four-layer neural networks. The paper also presents experimental results of word cluster recognition in the context of phrase meaning analysis.
منابع مشابه
Intelligent Semantic-Based System for Corpus Analysis through Hybrid Probabilistic Neural Networks
The paper describes the application of hybrid probabilistic neural networks for corpus analysis which consists of intelligent semanticbased methods of analysis and recognition of word clusters and their meaning. The task of analyzing a corpus of academic articles was resolved with hybrid probabilistic neural networks and developed word clusters. The created prototypes of word clusters provide t...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملApplication of Radial Basis Neural Networks in Fault Diagnosis of Synchronous Generator
This paper presents the application of radial basis neural networks to the development of a novel method for the condition monitoring and fault diagnosis of synchronous generators. In the proposed scheme, flux linkage analysis is used to reach a decision. Probabilistic neural network (PNN) and discrete wavelet transform (DWT) are used in design of fault diagnosis system. PNN as main part of thi...
متن کاملAN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS
In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...
متن کاملEstimation of Total Organic Carbon from well logs and seismic sections via neural network and ant colony optimization approach: a case study from the Mansuri oil field, SW Iran
In this paper, 2D seismic data and petrophysical logs of the Pabdeh Formation from four wells of the Mansuri oil field are utilized. ΔLog R method was used to generate a continuous TOC log from petrophysical data. The calculated TOC values by ΔLog R method, used for a multi-attribute seismic analysis. In this study, seismic inversion was performed based on neural networks algorithm and the resu...
متن کامل